Protein Domains and Distant Relatives

PSI-BLAST, Clustering, Multiple Sequence Alignments and HMMER

> Brandi Cantarel, Ph.D UTSW, Department of Bioinformatics Programming for Biology 2018

> > **UT Southwestern** Medical Center Lyda Hill Department of Bioinformatics

Protein Domain Take Home

- Protein divergence is not uniform over a protein some parts are more conserved than others
- Position specific scoring matrices can capture the specific patterns of conservation at different sites in a protein
- PSI-BLAST combines searching, multiple alignment, and PSSMs
- Statistical estimates are difficult with PSSMs, use PSI- SEARCH and PSI-PRSS
- HMMER3 creates HMM models of a protein family from a multiple sequence alignment
- Iterative PSSM/HMM searches may be contaminated by Homologous Overextension
- Single models cannot capture diverse families (PFAM Clans)
- Protein domains can be identified using RPS-BLAST or CDD searching

Inferring Homology from Statistical Significance

Real UNRELATED sequences have similarity scores that are indistinguishable from RANDOM sequences

If a similarity is NOT *RANDOM*, then it must be NOT *UNRELATED*

Therefore, NOT *RANDOM* (statistically significant) similarity must reflect *RELATED* sequences

Protein Domains are structural units that can pair with different partners.

Homology in Domains

Imagine you are searching with a protein with multiple domains

ob Title: gb|AAO31759| (430 letters) Putative conserved domains have been detected, click on the image below for detailed results. 225 150 Query seq. Superfamilies Cellulase superfamily CBM_10 sup CBM_10 su Request ID KUZ8VU8K01R Searching Status Submitted at Thu Feb 16 17:03:07 2012 Current time Thu Feb 16 17:03:12 2012 Time since submission 00:00:04

This page will be automatically updated in 12 seconds

BLAST Reports Multiple Highest Scoring Pairs

GENE ID: 8210864 TERTU 2894 | glycoside hydrolase family 5 domain-containing protein [Teredinibacter turnerae T7902] (10 or fewer PubMed links)

Sort alignments for this subject sequence by: E value Score Percent identity Query start position Subject start position Score = 353 bits (906), Expect = 2e-110, Method: Compositional matrix adjust. Identities = 168/322 (52%), Positives = 227/322 (70%), Gaps = 9/322 (3%) Query 33 LTALGLMLAAV----SASAGFYVSGKQLREGNGNNFIMRGVNLPHAWFPDRTNQALADIS 88 L+++ +AAV +A+AGF+V L + N F+MRGVN H W+ RT QAL DI LSSVAATIAAVCLSTAANAGFHVENGLLLDANDKPFVMRGVNHAHTWYEARTQQALIDIE Sbjct 70 129 Query 89 ATGANSVRVVLSNG---RLWSRTPESQVASIISQAKARQLITVLEVHDTTGYGEQT-AAT 144 + GAN+VR+VLSNG W R E VA II+Q KA ++I++EVHD+TGY E+ AA Sbjct 130 SVGANAVRIVLSNGAHGEGWGRDSEQAVAGIIAQMKALEMISIVEVHDSTGYPEKAGAAP 189 Query 145 LSEAVDYWIAIRNALIGQEDYVIINIGNEPFGNGQSASTWLNLHRDAINRLRNAGFTHTL 204 +S AVDYW+ I++ALIG+EDYVIINI NEPFGN SA W++ H++AI RLR AG THTL Sbjct 190 MSTAVDYWLDIKDALIGEEDYVIINIANEPFGNTASADDWIDAHKEAITRLRAAGLTHTL 249 Query 205 MVDAANWGQDWENIMRNNASSLFNSDPRRNVIFSVHMYEVYPNDTAVNNYMSAF-NSMNL 263 MVDAANWGODW+ +MR++A +F DP N++FS+HMY+++ N AV++Y+ F L 309 Sbjct 250 MVDAANWGQDWQYVMRDHAQEIFAHDPLANIVFSIHMYQIFNNRQAVDSYLKTFVEDYKL Query 264 PLVVGEFAANHFGSYVDAGSIMARAQQYGFGYLGWSWSGNSSNLSALDVVTNFNAGSLTT 323 PLVVGEF A+H G VD SI+ + Y GYLGWSWSGNS + +LD+ N++ - L+ Sbjct 310 PLVVGEFGADHGGEDVDEASILELCELYNLGYLGWSWSGNSGGVESLDITLNYDVNDLSP 369 Query 324 WGNLLINNTNGIRNTSRKATIF 345 WG+ LIN+ GIRNT++ A++F Sbjct 370 WGDFLINSAYGIRNTAQTASVF 391 Score = 51.2 bits (121), Expect = 3e-04, Method: Compositional matrix adjust. Identities = 20/36 (56%), Positives = 24/36 (67%), Gaps = 1/36 (3%) Query 396 CNWYGTSY-PICVNTSSGWGWENNRSCIAASTCAAQ 430 C WY P+C SGWGWENN+SCI +TCA+Q Sbjct 675 CQWYQDPLRPLCTQQDSGWGWENNQSCIGRTTCASQ 710 Score = 46.6 bits (109), Expect = 0.008, Method: Compositional matrix adjust. Identities = 17/32 (53%), Positives = 22/32 (69%), Gaps = 0/32 (0%) Query 396 CNWYGTSYPICVNTSSGWGWENNRSCIAASTC 427 CNWYG P+C + GWG EN ++C+ ASTC Sbjct 778 CNWYGWIVPVCAFSDQGWGNENGQTCVGASTC 809

Homology in Domains

Xylanase

	-
The best scores are: Opt bits E(445410) %_id %_sim	alen
sp P45796.1 XYND_PAEPO Arabinoxylan arabinofuranohydrol (635) 1813 412.5 2.6e-113 0.537 0.81	7 486 <u>align</u>
sp Q45071.2 XYND_BACSU Arabinoxylan arabinofuranohydrol (513) 1509 345.0 4.2e-93 0.554 0.812	495 <u>align</u>
sp Q9WXE8.2 XYLO_PRERU Putative beta-xylosidase; 1,4-be (518) 563 135.0 7.2e-30 0.384 0.645	276
+- 241 63.5 2.4e-08 0.327 0.633	150 <u>align</u>
sp P77713.1 YAGH_ECOLI Putative beta-xylosidase; 1,4-be (536) 334 84.1 1.5e-14 0.305 0.561	321 <u>align</u>
sp P94489.2 XYNB_BACSU Beta-xylosidase; 1,4-beta-D-xyla (533) 318 80.6 1.8e-13 0.285 0.555	362 <u>align</u>
sp P07129.2 XYNB_BACPU Beta-xylosidase; 1,4-beta-D-xyla (535) 316 80.1 2.4e-13 0.295 0.553	356 <u>align</u>
sp P45982.1 XYLB_BUTFI Xylosidase/arabinosidase; Includ (517) 312 79.3 4.3e-13 0.301 0.578	396 <u>align</u>
sp P48791.1 XYNB_PRERU Beta-xylosidase; 1,4-beta-D-xyla (319) 228 60.7 1e-07 0.281 0.548	345 <u>align</u>
sp P36917.1 XYNA_THESA Endo-1,4-beta-xylanase A; Xylan (1157) 205 55.4 1.5e-05 0.317 0.662	139
+- 198 53.8 4.4e-05 0.261 0.688	138 <u>align</u>
sp P33558.2 XYNA2_CLOSR Endo-1,4-beta-xylanase A; Xyla (512) 190 52.2 6.1e-05 0.249 0.558	249 <u>align</u>
sp P38535.1 XYNX_CLOTM Exoglucanase xynX; 1,4-beta-cell (1087) 194 52.9 7.6e-05 0.223 0.607	229 <u>align</u>
sp Q8GJ44.2 XYNA1_CLOSR Endo-1,4-beta-xylanase A; 1,4-b (651) 190 52.1 7.9e-05 0.322 0.653	118 <u>align</u>
sp P10478.3 XYNZ_CLOTH Endo-1,4-beta-xylanase Z; Xylan (837) 187 51.4 0.00017 0.362 0.691	94 <u>align</u>
sp P94522.3 ABNA_BACSU Arabinan endo-1,5-alpha-L-arabin (323) 169 47.6 0.00092 0.261 0.540	287 <u>align</u>
sp P48790.1 XYLA_CLOSR Xylosidase/arabinosidase; Includ (473) 164 46.4 0.003 0.268 0.523	497 <u>align</u>
sp Q5AZC8.1 ABNB_EMENI Arabinan endo-1,5-alpha-L-arabin (400) 153 44.0 0.014 0.290 0.512	252 <u>align</u>

Not all hits are to the full protein

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

Look at the Alignment Coverage

			Scor	8	E-16	alue	
Sequences produc	ing significant alignments:	Manager	Total secure		/ Evelue	Maryldont	Links
ACCESSION	Description	975	975	100%		100%	
7P_04412200_1	endo- 1,4-beta-mannanase [Cellvibrio Japonicus Ueda107]	410	410	00%	20-137	E204	
<u>ZP_04412299.1</u>	beta-1,4-mannanase [Vibrio cholerae TM 11079-80]	410	410	90%	20-137	52%	
<u>YP_005049078.1</u>	unnamed protein product [Vibrio furnissii NCTC 11218]	407	407	90%	2e-136	52%	G
<u>ZP_05878245.1</u>	beta-1,4-mannanase [Vibrio furnissii CIP 102972]	407	407	90%	3e-136	52%	_
NP_637144.1	mannan endo-1,4-beta-mannosidase [Xanthomonas campestris pv. campestr	395	395	76%	9e-133	59%	G
YP_525540.1	unnamed protein product [Saccharophagus degradans 2-40]	<u>399</u>	399	92%	7e-131	55%	G
YP_001982936.1	endo- 1,4-beta-mannanase [Cellvibrio japonicus Ueda107]	399	399	90%	1e-130	50%	G
ZP_08181055.1	Cellulase (glycosyl hydrolase family 5) [Xanthomonas vesicatoria ATCC 35937	<u>387</u>	387	75%	2e-129	58%	
YP_003162168.1	glycoside hydrolase family protein [Jonesia denitrificans DSM 20603]	377	377	88%	1e-124	49%	G
YP_003075599.1	glycoside hydrolase family 5 domain-containing protein [Teredinibacter turner	378	511	93%	1e-122	69%	G
ZP_08184376.1	Cellulase (glycosyl hydrolase family 5) [Xanthomonas gardneri ATCC 19865]	369	369	73%	2e-122	59%	
YP_431433.1	endoglucanase [Hahella chejuensis KCTC 2396]	372	372	75%	5e-121	53%	G
ZP_06489984.1	mannan endo-1,4-beta-mannosidase [Xanthomonas campestris pv. musacear	364	364	75%	2e-120	57%	
ZP_06486842.1	putative endo-1,4-beta-mannosidase [Xanthomonas campestris pv. vasculoru	363	363	75%	2e-120	57%	
NP_642123.1	unnamed protein product [Xanthomonas axonopodis pv. citri str. 306]	363	363	75%	2e-120	58%	G
ZP_06704657.1	mannan endo-1,4-beta-mannosidase [Xanthomonas fuscans subsp. aurantifo	363	363	75%	5e-120	57%	
ZP_06729989.1	mannan endo-1,4-beta-mannosidase [Xanthomonas fuscans subsp. aurantifo	362	362	75%	7e-120	57%	
YP_526130.1	unnamed protein product [Saccharophagus degradans 2-40]	369	457	92%	9e-120	46%	G
YP_004851393.1	mannan endo-1,4-beta-mannosidase [Xanthomonas axonopodis pv. citrumelo	359	359	75%	1e-118	57%	G
ZP_08186387.1	Cellulase (glycosyl hydrolase family 5) [Xanthomonas perforans 91-118]	358	358	75%	2e-118	57%	_
					· · · -		

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

MaxID

Examine The Alignment Length

```
Query: TMP.g

[>>>gi 28200469 gb AA031759.1 endo-b1,4-mannanase 5A [Cellvibrio - 430 aa

Library: swissprot (NCBI)

165796297 residues in 445410 sequences

Statistics: Expectation n fit: rho(ln(x)) = 7.6630+/-0.000201; mu= 3.3292+/- 0.012

mean_var=63.4892+/-13.027, 0's: 51 Z-trim(131.3): 79 B-trim: 0 in 0/68

Lambda= 0.160962

statistics sampled from 60000 (180148) to 445316 sequences

Algorithm: Smith-Waterman (SSE2, Michael Farrar 2006) (7.2 Nov 2010)

Parameters: BL50 matrix (15:-5)xS, open/ext: -10/-2

Scan time: 29.700
```

The best scores are: sp P51529.2 MANA_STRUT_Mannan_endo-1.4-beta-mannosidase (_383)_1225_291.3_1.5e-77_0.520_0.789_375											
sp P22533.2 MANB_CALSA Bet	ta-mannanase/endoglucanase A; (1331)	896 214.5 7.1e-54 0.403 0.686	382 <mark>align</mark>								
sp P14708.2 XYNA_CELJU End sp P10476.2 GUNA_CELJU End sp P27033.2 GUNC_CELJU End sp P18126.1 GUNB_CELJU End sp 074706.1 EGLB_ASPNG End sp Q12647.1 GUNB_NEOPA End sp Q96WQ8.1 EGLB_ASPKA Pro	do-1,4-beta-xylanase A; xylan (611) doglucanase A; EGA; Cellulase (962) doglucanase C; Cellodextrinase (747) doglucanase B; EGB; Cellulase (511) do-beta-1,4-glucanase B; Endo (331) doglucanase B; Cellulase B; En (473) obable endo-beta-1,4-glucanase (332)	226 59.1 1.9e-07 0.330 0.614 227 59.2 2.8e-07 0.350 0.657 223 58.4 3.9e-07 0.286 0.636 201 53.4 8.3e-06 0.327 0.619 190 51.0 2.9e-05 0.275 0.558 183 49.2 0.00014 0.229 0.469 179 48.4 0.00017 0.278 0.543 166 45.3 0.0018 0.227 0.508	176 align 137 align 206 align 202 align 233 align 414 align 234 align 299 align								
sp P54937.1 GUNA_CLOLO End	doglucanase A; Cellulase A; En (517)	166 45.3 0.0024 0.209 0.520	406 align								

Finding Repeated Domains Local Alignments

<pre>>>>gil49037474 >>sp P62158.2 Waterman-Egge 46.1% identity</pre>	CALM_HUMAN C CALM_HUMAN C rt score: 22 (73.7% simi	ALM_HUM almodulin; 0; 50.8 b lar) in 76	AN, 149 aa CaM its; E(1) aa overlag	vs TMP.q2 li < 1.1e-11 p (1-76:77-	brary 149)	С	almodulin
Entrez Lookup	Re-search d	atabase G 0 3	eneral re-s 0 40	<u>search</u> 0 50	6	0 7	0
gi 490 MADQLTE	EQIAEFKEAFSI	FDKDGDGTIT	TKELGTVMRSI	LGQNPTEAELQ	DMINEVDAD	GNGTIDFPEF	LTMMARK
sp P62 MKDTDSE	EEIREAFRV	FDKDGNGYIS	AAELRHVMTNI	II I. I.I.	.:: :.: : EMIREADID	GDGOVNYEEF	. ::. : VOMMTAK
80	90	100	110	120	130	140	
Waterman-Egge 34.3% identity Entrez Lookup gi 490 AEFKEAF :: sp P62 AELQDMI 50	ert score: 18 (64.8% simi <u>Re-search d</u> 20 3 SLFDKDGDGTIT . : ::.:: NEVDADGNGTID 60	1; 42.6 b lar) in 10 atabase G 0 TKELGTVM-R :.:.:: FPEFLTMMAR 70	its; E(1) 5 aa overla eneral re-s 40 5LGQNPTEAE : KMKDTDSEEE 80	<pre>< 3.2e-09 ap (11-111: search 50 6 LQDMINEVDAD : : IREAFRVFDKD 90</pre>	47-147) 0 GNGTIDFPE ::: :. : GNGYISAAE 100	70 FLTMMAR LRHVMTNLGE 110	80 KMKDTDSEEEI :. :: : KLTDEEVDEMI 120
90 gi 490 REAFRVF	100 DKDGNGYISAAE	110 LRHVMT					
sp P62 REA 13	DIDGDGQVNYEE 0 140	FVQMMT					

Waterman-Eggert score: 64; 18.2 bits; E(1) < 0.07 34.2% identity (71.1% similar) in 38 aa overlap (1-37:113-146) Entrez Lookup Re-search database General re-search 10 20 30 gi|490 MADQLTEEQIAEF-KEAFSLFDKDGDGTITTKELGTVM:..:..: sp|P62 LGEKLTDEEVDEMIREA----DIDGDGQVNYEEFVQMM 120 130 140

Finding Domains Local Alignments

Southwestern Medical Center yda Hill Department of Bioinformatics

Local Alignments

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

Conserved Domains and Protein Classification

OVERVIEW SEARCH HOW TO HELP NEWS FTP PUBLICATIONS DISCOVER

UT Southwestern Medical Center

Conserved Domains Database

Conserved domains on [gi|121694|sp|P20432|]

View Standard Results 📀 😰

RecName: Full=Glutathione S-transferase D1; AltName: Full=DDT-dehydrochlorinase

Protein Classification

glutathione S-transferase (domain architecture ID 10122640)

glutathione S-transferase (GST) catalyzes the conjugation of reduced glutathione to a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress; such as insect class delta and epsilon GSTs that play major roles in insecticide resistance by facilitating reductive dehydrochlorination of insecticides or conjugating them with GSH

UT Southwestern Medical Center

CD Search

	S www	.ncbi.nlm	n.nih.gov/Structure/cdd/wrg	osb. <mark>cgi</mark>	☆ ⊽ С 🚷 т нмм	ER web server	۹ [
۶	3 NG	CBI		k e T F TMKEV I YHLGO YIMA k q LYD e 1 k dT Y Conserved Q pQLADTEVENIUWK sQLGDOMAINS WA s SI SRADVYKRIWE YINH I OL		5272(0/2 823(9/2 9965	
HOME	E SEARCH	GUIDE	Structure Home	3D Macromolecular Structures	Conserved Domains	Pubchem	BioSystems

Search for Conserved Domains within a protein or coding nucleotide sequence

NOW! Use Batch CD-search to submit multiple query proteins at once! Enter protein or nucleotide query as accession, gi, or sequence in FASTA format ?	OPTIONS Search against database 2 : CDD 42251 PSSMs Expect Value 2 threshold: 0.01 ±
RPS-BLAST (Reverse PSI-BLAST) searches a query sequence against a database of profiles	Apply low-complexity filter 2 Force live search 2 Maximum number of hits 2 500 Result mode •Concise 2 Full 2
Submit Reset	Ι

Retrieve previous CD-search result									
Request ID:		Retrieve	2						

Domain Search is Run with Web BLAST

← → C	☆	0	G		:
🚦 Apps ★ Bookmarks 🛅 UTSW-Links 🚞 software 🛅 Dallas 🛅 Seqeunce DB 🛅 R 📑 Facebook 👶 Asana	»		Other	Bookma	rks
RID W4EFKJXH015 (Expires on 10-15 02:31 am) Query ID P20432.1 Database Name swissprot Description RecName: Full=Glutathione S-transferase D1; AltName: Full=DDT-dehydrochlorinase Database Name swissprot Molecule type amino acid Query Length 209 Distance tree of results] [Multiple alignment] [MSA viewer] Molecule type Search Summary [Taxonomy reports] [Distance tree of results] [Multiple alignment] [MSA viewer] New Analyze your query with SmartBLAST	Prot sequ	ience	5		
Show Conserved Domains Putative conserved domains have been detected, click on the image below for detailed results. Query seq. dimer interface dimer interface	2	00 2	09		

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

CD Search

Protein Classification

glutathione S-transferase (domain architecture ID 10122640)

glutathione S-transferase (GST) catalyzes the conjugation of reduced glutathione to a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress; such as insect class delta and epsilon GSTs that play major roles in insecticide resistance by facilitating reductive dehydrochlorination of insecticides or conjugating them with GSH

+	Name	Accession	Description	Interval	E-value
[+] GST_	C_Delta_Epsilon	cd03177	C-terminal, alpha helical domain of Class Delta and Epsilon Glutathione S-transferases;	89-205	8.90e-63
[+] GST_	N_Delta_Epsilon	cd03045	GST_N family, Class Delta and Epsilon subfamily; GSTs are cytosolic dimeric proteins involved	2-75	8.43e-47

Homology through Transitivity

- What is a point specific scoring matrix?
- How can we use PSSMs in order to identify distance family members?

Protein A is Homologous to Proteins B Protein B is Homologous to Protein C

Therefore: Protein C is Homologous to Protein A

Homology is Transitive (in Protein Domains)

PSSM for detecting distance relationships

Profile analysis: Detection of distantly related proteins

(amino acid/sequence comparison/protein structure/globin structure/immunoglobulin structure)

MICHAEL GRIBSKOV*, ANDREW D. MCLACHLAN[†], AND DAVID EISENBERG*

*Molecular Biology Institute and Department of Chemistry an Council, Laboratory of Molecular Biology, Hills Road, Cambr

Communicated by Paul Boyer, February 17, 1987 (reco

Lyda Hill Department of Bioinformatics

Simple PSSM

TACGAT
TATAAT
TATAAT
GATACT
TATGAT
TATGTT

	1	2	3	4	5	6
A	0	6	0	3	4	0
С	0	0	1	0	1	0
G	1	0	0	3	0	0
Т	5	0	5	0	1	6

PSSMs

sp|074706|EGLB ASPNG MKFQSTL--LLAAAAGSALAV-----PHGSGHKKRASVFEWFGSNESG sp|Q96WQ8|EGLB_ASPKA MKFQSTL--LLAAAAGSALAV-----PHGPGHKKRASVFEWFGSNESG sp|P51529|MANA_STRLI MR---NARSTLITTAGMAFAVLGLLFALAGPSAGRAEAAAGGIHVSNGRVVE--GNGSAF sp|P22533|MANB CALSA MRLKTKIRKKWLSVLCTVVFLLNILFI----ANVTILPKVGAATSNDGVVKI----DTS *. :. .. : •• *•: . .: • sp|074706|EGLB ASPNG AEFGTNIPGVWGTDYIFPDPST--ISTLIGKGMNFFRVQFMMERLLPDSMTGSYDEEYLA sp|Q96WQ8|EGLB_ASPKA AEFGTNIPGVWGTDYIFPDPSA--ISTLIDKGMNFFRVQFMMERLLPDSMTGSYDEEYLA sp|P51529|MANA STRLI VMRGVNHAYTW-----YPDRTGS-IADIAAKGANTVRVVL-----SSGGRWTKTSAS sp|P22533|MANB CALSA TLIGTNHAHCW-----YRDRLDTALRGIRSWGMNSVRVVL-----SNGYRWTKIPAS

% at Position

-																		:
	ARNDCQE	GHILK	MFPSTWYV	A R	N D) C	Q 1	E G	Н	I L	K I	M F	P S	т	W	Y	v	
1 M	-1 -2 -2 -3 -2 -1 -2	-3 -2 1 2 -2	6 0 -3 -2 -1 -2 -1 1	0 0	0	0 0	0	0 0	0	0 0	0 1	0 00	0	0 0	0	0	0	0.43 inf
2 K	-1 5 0 -1 -3 1 0	-2 -1 -3 -2 4 -	-1 -3 -2 -1 -1 -3 -2 -3	0 58	0	0 0	0	0 0	0	0 0	42	0 0	0	0 0	0	0	0	0.60 int
3 F	-1 -2 -2 -2 -1 -2 -2	-2 -1 0 2 -2	1 4 -2 -1 -1 0 2 0	2 1	1	2 1	1	2 2	1	1 31	2	1 44	1	2 2	0	1	2	0.22 inf
4 Q	-1 1 0 0 -2 4 1	-1 0 -2 -2 3 -	-1 -2 -1 0 0 -2 -1 -2	2 1	1	2 1	44	2 2	1	1 3	30	1 1	1	2 2	0	1	2	0.30 inf
5 S	1 -1 0 0 -1 0 0	-1 -1 -1 -1 0 -	-1 -2 0 3 3 -2 -1 -1	2 1	1	2 1	1	2 2	1	1 3	2	1 1	1 4	5 30	0	1	2	0.24 inf
6 Т	-1 0 3 0 -2 0 0	-1 -1 -2 -2 2 -	-1 -3 -1 1 3 -3 -2 -1	0 0	29	0 0	0	0 0	0	0 0	29	0 0	0	0 42	0	0	0	0.32 inf
7 L	1 -2 -3 -3 -1 -2 -2	-2 -3 2 3 -2	1 0 -2 -1 -1 -2 -1 1	29 0	0	0 0	0	0 0	0	29 42	0	0 0	0	0 0	0	0	0	0.21 inf
8 L	-1 0 -1 -2 -2 0 -1	-2 -2 0 2 2	1 -1 -2 0 2 -2 -2 0	0 0	0	0 0	0	0 0	0	0 42	29	0 0	0	0 29	0	0	0	0.15 inf
9 L	-2 -2 -4 -4 -2 -2 -3	-3 -3 1 3 -3	1 1 -3 -3 -2 7 0 0	0 0	0	0 0	0	0 0	0	0 71	0	0 0	0	0 0	29	0	0	0.68 inf
10 A	2 -2 -3 -3 -1 -2 -2	-2 -2 2 2 -2	1 -1 -2 0 -1 -2 -2 1	42 0	0	0 0	0	0 0	0	29 29	0	0 0	0	0 0	0	0	0	0.18 inf
11 A	3 -1 0 -1 -1 -1 -1	0 -2 -1 -2 -1 -	-1 -2 -1 2 3 -3 -2 -1	42 0	0	0 0	0	0 0	0	0 0	0	0 0	0 2	929	0	0	0	0.32 inf
12 A	2 -2 -1 -2 -1 -1 -1	-1 -2 0 -1 -1	0 -2 -1 1 2 -3 -2 2	42 0	0	0 0	0	0 0	0	0 0	0	0 0	0	0 29	0	0	29	0.21 inf
13 A	3 -2 -2 -2 -1 -1 -1	-1 -2 0 1 -1	0 -1 -1 0 0 -2 -2 0	71 0	0	0 0	0	0 0	0	0 29	0	0 0	0	0 0	0	0	0	0.24 inf
14 G	0 -3 -1 -2 5 -2 -3	5 -2 -3 -3 -2 -	-2 -3 -2 -1 -1 -3 -3 -2	0 0	0	0 29	0	0 71	0	0 0	0	0 0	0	0 0	0	0	0	0.79 inf
15 S	0 -1 0 -1 -1 0 -1	-1 -1 -1 0 -1	3 -2 -1 3 3 -2 -2 0	0 0	0	0 0	0	0 0	0	0 0	0 2	29 0	0 4	2 29	0	0	0	0.23 inf
16 A	3 -2 -2 -2 -1 -1 -1	-1 -2 0 -1 -1	0 -2 -1 1 0 -3 -2 2	71 0	0	0 0	0	0 0	0	0 0	0	0 0	0	0 0	0	0	29	0.27 inf
17 L	-1 -3 -3 -4 -1 -3 -3	-4 -2 2 3 -3	1 3 -3 -2 -1 -1 1 2	0 0	0	0 0	0	0 0	0	0 42	0	0 29	0	0 0	0	0	29	0.31 inf
18 A	3 -2 -2 -2 -1 -1 -1	-1 -2 -1 -1 -1 -	-1 3 -2 0 -1 -1 0 0	71 0	0	0 0	0	0 0	0	0 0	0	0 29	0	0 0	0	0	0	0.27 inf
19 V	-1 -3 -3 -3 -1 -2 -3	-3 -3 2 2 -2	1 0 -3 -2 0 -3 -1 3	0 0	0	0 0	0	0 0	0	0 29	0	0 0	0	0 0	0	0	71	0.33 inf
20 P	2 -2 -2 -2 -2 -1 -1	1 -2 -2 -3 -1	-2 -3 7 0 -1 -4 -3 -2	29 0	0	0 0	0	0 0	0 0	0	0 0	0 0	71	0	0 0	0	0	1.33 i

UTSouthwestern Medical Center Lyda Hill Department of Bioinformatics

Where Pairwise Scores Come From

score(AA)=log
$$\frac{P(A|A)}{f(A)}$$

"probability of A given an A"" the observed probability of seeing an A" aligned to an A in real alignments"

frequency of A" the expected frequency of A in any sequence

$$Sc(AA) = \log_{2} \frac{0.64}{0.04} = +4$$
$$Sc(AE) = \log_{2} \frac{0.01}{0.04} = -2$$

Where Profile Scores Should Come From

score(Alx)=log
$$\frac{P(Alposition x)}{f(A)}$$

"probability of A at position x"" the observed probability of seeing an A in the consensus column X

Sc(A|6) =
$$\log_2 \frac{1.00}{0.04} = +4.6$$
 Sc(A|5) = $\log_2 \frac{0.04}{0.04} = 0$
Sc(N|6) = $\log_2 \frac{0.00}{0.06} = -\inf$ Sc(N|5) = $\log_2 \frac{0.06}{0.06} = 0$

what about position-specific gap penalties? how to estimate parameters from small numbers of observations?

> UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

Nucleic Acids Res. 1997 Sep 1;25(17):3389-402.

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA. altschul@ncbi.nlm.nih.gov

Abstract

The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

PMID: 9254694 [PubMed - indexed for MEDLINE] PMCID: PMC146917 Free PMC Article

- Publication Types, MeSH Terms, Substances, Grant Support
- LinkOut more resources

PSI-BLAST uses PSSMs to Find Distant Homologs

NCBI/ BLAST/ blastp	suite	5	Standar	
blastn blastp blas	stx tblastn tblastx			
Enter Query S	Sequence	BLASTP programs s	earch pro	
Enter accession n	umber(s) gi(s) or FASTA sequence(s) O	Clear Ouerveubrance O		
AA031759	lumber(s), gr(s), or FASTA sequence(s) 🥪		-	
		From		
		То		
	A			
Or, upload file	Browse 😡			
Job Title				
	Enter a descriptive title for your BLAST search			
Align two or mo	ore sequences 🐭			
Choose Searc	h Set			
Database	UniProtKB/Swiss-Prot(swissprot)			
Organism				
Optional	Enter organism name or id-completions will be suggested	Exclude (+)		
	Enter organism common name, binomial, or tax id. Only 20	top taxa will be shown. 🥹		
Exclude Optional	Models (XM/XP) Uncultured/environmental same	ple sequences		
Entrez Query				
Optional	Enter an Entrez query to limit search 😡			
Program Sele	ction			
Algorithm	 blastp (protein-protein BLAST) 			
	 PSI-BLAST (Position-Specific Iterated BLAST) 			
	 PHI-BLAST (Pattern Hit Initiated BLAST) 			
	 DELTA-BLAST (Domain Enhanced Lookup Time A 	ccelerated BLAST)		
	Choose a BLAST algorithm 😡			S

Lyda Hill Department of Bioinformatics

Algorithm param	ers Note: Parameter values that differ from the default are highlighted in yellow and marked with sign	ete
General Pa	meters	
Max target sequences	 ◆ 500 Select the maximum number of aligned sequences to display 	
Short queries	Automatically adjust parameters for short input sequences	
Expect thresho	▲ 1e-06	
Word size	• 2 🗘 🕄	
Max matches i query range		
Scoring Pa	meters	
Matrix	 ◆ BLOSUM80 ◇ 	
Gap Costs	 Existence: 8 Extension: 2 ③ 	
Compositional adjustments	Conditional compositional score matrix adjustment ᅌ 🚱	
Filters and	asking	
Filter	Low complexity regions	
Mask	 Mask for lookup table only Mask lower case letters 	

A SmithWaterman Search

```
Query: TMP.q
1>>>gi|28200469|gb|AA031759.1| endo-b1,4-mannanase 5A [Cellvibrio - 430 aa
Library: Swissprot (NCBI)
165796297 residues in 445410 sequences
Statistics: Expectation_n fit: rho(ln(x))= 7.6630+/-0.000201; mu= 3.3292+/- 0.012
mean_var=63.4892+/-13.027, 0's: 51 Z-trim(131.3): 79 B-trim: 0 in 0/68
Lambda= 0.160962
statistics sampled from 60000 (180148) to 445316 sequences
Algorithm: Smith-Waterman (SSE2, Michael Farrar 2006) (7.2 Nov 2010)
Parameters: BL50 matrix (15:-5)xS, open/ext: -10/-2
Scan time: 29.700
```

The	e best sco	ores are:		s-w bits E(445410) %_id %_sim alen
sp	P51529.2	MANA_STRLI	Mannan endo-1,4-beta-mannosidase (38	3) 1225 291.3 1.5e-77 0.520 0.789 375 align
\mathbf{sp}	P22533.2	MANB_CALSA	Beta-mannanase/endoglucanase A; (133	1) 896 214.5 7.1e-54 0.403 0.686 382 align
\mathbf{sp}	P14768.2	XYNA CELJU	Endo-1,4-beta-xylanase A; Xylan (61	1) 226 59.1 1.9e-07 0.330 0.614 176 align
\mathbf{sp}	P10476.2	GUNA_CELJU	Endoglucanase A; EGA; Cellulase (96	2) 227 59.2 2.8e-07 0.350 0.657 137 align
\mathbf{sp}	P27033.2	GUNC_CELJU	Endoglucanase C; Cellodextrinase (74	7) 223 58.4 3.9e-07 0.286 0.636 206 align
sp	P18126.1	GUNB_CELJU	Endoglucanase B; EGB; Cellulase (51	1) 201 53.4 8.3e-06 0.327 0.619 202 align
\mathbf{sp}	074706.1	EGLB_ASPNG	Endo-beta-1,4-glucanase B; Endo (33	1) 190 51.0 2.9e-05 0.275 0.558 233 align
\mathbf{sp}	Q12647.1	GUNB_NEOPA	Endoglucanase B; Cellulase B; En (47	3) 183 49.2 0.00014 0.229 0.469 414 align
\mathbf{sp}	Q96WQ8.1	EGLB ASPKA	Probable endo-beta-1,4-glucanase (33	2) 179 48.4 0.00017 0.278 0.543 234 align
\mathbf{sp}	P23661.1	GUNB_RUMAL	Endoglucanase B; Cellulase B; En (40)	9) 166 45.3 0.0018 0.227 0.508 299 align
sp	P54937.1	GUNA CLOLO	Endoglucanase A; Cellulase A; En (51	7) 166 45.3 0.0024 0.209 0.520 406 align
	DOC 470 1	armin_ar oan		AL 164 44 7 A AAAA A 100 A F46 -117 -117

A PSI-BLAST First Iteration

Sequences producing significant alignments with E-value BETTER than threshold

Select: All None Selected:0

I	Alignments EDownload CenPept Graphics Distance tree of results Multiple alignment											
		Description	Max score	Total score	Query cover	E value	Ident	Accession	Select for PSI blast	Used to build PSSM		
		RecName: Full=Glutathione S-transferase D1; AltName: Full=DDT-dehydrochlorinase	465	465	100%	9e-162	100%	<u>P20432.1</u>	\checkmark			
		RecName: Full=Glutathione S-transferase 1-1; AltName: Full=GST class-theta	458	458	100%	6e-159	98%	<u>P30108.2</u>				
		RecName: Full=Glutathione S-transferase 1-1; AltName: Full=DDT-dehydrochlorinase; AltName: Full	454	454	100%	1e-157	97%	P67805.2	 ✓ 			
		RecName: Full=Glutathione S-transferase 1-1; AltName: Full=DDT-dehydrochlorinase; AltName: Full	451	451	100%	2e-156	96%	<u>P30106.2</u>				
		RecName: Full=Glutathione S-transferase 1-1; AltName: Full=DDT-dehydrochlorinase; AltName: Full	451	451	100%	3e-156	96%	<u>P30104.2</u>				
		RecName: Full=Glutathione S-transferase 1-1; AltName: Full=DDT-dehydrochlorinase; AltName: Full	436	436	95%	1e-150	98%	<u>P30107.1</u>				
		RecName: Full=Glutathione S-transferase 1-1; AltName: Full=DDT-dehydrochlorinase; AltName: Full	432	432	95%	3e-149	97%	<u>P67804.1</u>				
		RecName: Full=Glutathione S-transferase 1; AltName: Full=GST class-theta	405	405	99%	4e-138	85%	P28338.1				
		RecName: Full=Glutathione S-transferase 1-1; AltName: Full=GST class-theta	397	397	99%	6e-135	83%	P42860.2				
		RecName: Full=Glutathione S-transferase D2	339	339	99%	9e-112	70%	Q9VG98.1				
		RecName: Full=Glutathione S-transferase 2; AltName: Full=GST class-theta	338	338	99%	1e-111	71%	<u>P46431.2</u>	\checkmark			

PSI-BLAST Second Iteration

Sele	ct: <u>All</u> <u>None</u>	Selected:0	Yellow: sequences scoring below threshold	on pre	vious it	eration					
ÂT /	Alignments	Download	GenPept Graphics Distance tree of results Multiple al	<u>lignmer</u>	<u>nt</u>						0
			Description	Max score	Total score	Query cover	E value	Ident	Accession	Select for PSI blast	Used to build PSSM
	RecName: Ful	I=Glutathione S	S-transferase D1; AltName: Full=DDT-dehydrochlorinase	352	352	100%	7e-117	100%	P20432.1	 ✓ 	1
	RecName: Ful	I=Glutathione S	S-transferase 1-1; AltName: Full=GST class-theta	349	349	100%	2e-115	98%	<u>P30108.2</u>		1
	RecName: Ful	I=Glutathione S	S-transferase 1-1; AltName: Full=DDT-dehydrochlorinase; AltName	348	348	100%	3e-115	97%	P67805.2		~
	RecName: Ful	I=Glutathione S	S-transferase 1-1; AltName: Full=DDT-dehydrochlorinase; AltName	348	348	100%	3e-115	96%	<u>P30104.2</u>		1
	RecName: Ful	I=Glutathione S	S-transferase 1-1; AltName: Full=DDT-dehydrochlorinase; AltName	348	348	100%	3e-115	96%	<u>P30106.2</u>		1
	RecName: Ful	I=Glutathione S	S-transferase 1; AltName: Full=GST class-theta	342	342	99%	4e-113	85%	P28338.1		~
	RecName: Ful	I=Glutathione S	S-transferase 1-1; AltName: Full=GST class-theta	338	338	99%	2e-111	<mark>83%</mark>	P42860.2		~
	RecName: Ful	I=Maleylacetoa	cetate isomerase; Short=MAAI; AltName: Full=GSTZ1-1; AltName	182	182	85%	8e-51	26%	<u>P57113.2</u>		1
	RecName: Ful	I=Glutathione S	S-transferase 3; AltName: Full=GST class-phi member 3; AltName	181	181	95%	3e-50	23%	<u>P04907.4</u>		
	RecName: Ful	I=Glutathione S	S-transferase APIC; AltName: Full=GST class-phi	181	181	98%	3e-50	20%	<u>P46440.1</u>		
	RecName: Ful	I=Maleylacetoa	cetate isomerase; Short=MAAI; AltName: Full=GSTZ1-1; AltName	179	179	85%	1e-49	26%	Q9WVL0.1		~
	RecName: Ful	I=Glutathione S	S-transferase Z1; Short=AtGSTZ1; AltName: Full=GST class-zeta	<u>179</u>	179	92%	2e-49	25%	Q9ZVQ3.1		~
	RecName: Ful	I=Glutathione S	S-transferase hmp2; AltName: Full=Hypothemycin biosynthesis clu	<u>178</u>	178	88%	2e-49	24%	B3FWR8.1		~
	RecName: Ful	I=Probable gluta	athione S-transferase GSTF2; AltName: Full=GST-II	178	178	92%	2e-49	24%	<u>082451.3</u>		
	RecName: Ful	I=Glutathione S	S-transferase 1; AltName: Full=GST class-phi	178	178	94%	3e-49	21%	<u>P30110.1</u>		×
	RecName: Ful	I=Glutathione S	S-transferase zeta class	178	178	92%	5e-49	26%	<u>P57108.1</u>		1
	RecName: Ful	I=Glutathione S	S-transferase F5; Short=AtGSTF5; AltName: Full=GST class-phi m	1 78	178	93%	9e-49	23%	Q9SRY6.2		~
	RecName: Ful	I=Glutathione S	S-transferase PARB; AltName: Full=GST class-phi	174	174	98%	6e-48	19%	<u>P30109.1</u>		
	RecName: Ful	I=Glutathione S	S-transferase Z2; Short=AtGSTZ2; AltName: Full=GST class-zeta	172	172	92%	5e-47	26%	<u>Q9ZVQ4.1</u>		

Improving Accuracy

Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements

Alejandro A. Schäffer*, L. Aravind, Thomas L. Madden, Sergei Shavirin, John L. Spouge, Yuri I. Wolf, Eugene V. Koonin and Stephen F. Altschul + Author Affiliations

Abstract

Table 1.

Abbreviations for modifications of BLAST and PSI-BLAST

- F Filtering of database sequences with the SEG program
- W Construction of final alignments with the Smith-Waterman algorithm
- S Composition-based statistics
- R Reversed sequence score normalization
- D Dispersed method for inferring amino acid frequencies from gaps
- C Concentrated method for inferring amino acid frequencies from gaps
- M Restricted score rescaling
- bx Pseudocount parameter (default 10)
- px Purging percentage (default 98)
- hx E-value threshold for inclusion in PSI-BLAST multiple alignment

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

Error in Profile Searches

Homologous Over-Extension

Drawbacks to PSI-Search

- Hard to compare 2 profiles
- With few input sequences it's hard to create an accurate profile
- Including a non-homolog will capture "it's friends"

Error in Profile Searches

More Errors than Expected in PSI-BLAST vs SSEARCH

Curr Opin Struct Biol. 2005 Jun;15(3):254-60.

The limits of protein sequence comparison?

Pearson WR, Sierk ML

Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA. wrp@virginia.eou

Lyda Hill Department of Bioinformatics

HMMER

phmmer

- Compares a protein sequence against a protein sequence database
- •hmmscan
 - Compares a protein sequence to a profile HMM
- hmmsearch
 - Compares a profile HMM again a protein sequence database
- jackhammer
 - interactive hmmsearch

HMMER

It detects homology by comparing a profile-HMM to either a single sequence or a database of sequences.

DOWNLOAD

DOCUMENTATION

SEARCH

PUBLICATIONS

BLOG

HMMER: biosequence analysis using profile hidden Markov models

Get the latest version

Download source

(archived older versions)

HMMER is used for searching sequence databases for sequence homologs, and for making sequence alignments. It implements methods using probabilistic models called profile hidden Markov models (profile HMMs).

HMMER is often used together with a profile database, such as Pfam or many of the databases that participate in Interpro. But HMMER can also work with guery sequences, not just profiles, just like BLAST. For example, you can search a protein query sequence against a database with phmmer, or do an iterative search with jackhmmer.

HMMER is designed to detect remote homologs as sensitively as possible, relying on the strength of its underlying probability models. In the past, this strength came at significant computational expense, but as of the new HMMER3 project, HMMER is now essentially as fast as BLAST.

HMMER can be downloaded and installed as a command line tool on your own hardware, and now it is also more widely accessible to the scientific community via new search servers at the European Bioinformatics Institute.

Model HMM

HMM, modeling sequences of as and bs as 2 regions of potentially different residue composition

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

Profile HMM

- HMM describes the probabilities of each state transitions
- M_i to I_i , I_i to itself, I_i to M_{i+1}
- M_i to M_{i+1}
- M_i to D_{i+1} , D_i to D_{i+1} , D_i to M_{i+1}

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

Profile HMM

AT-GTTAT TACGT-AC

> UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

MMIMMDMM

Derive HMMs from Multiple Sequence Alignment

Profile HMMs represents the consensus for the alignment of sequence from the same family and are built using a multiple sequence alignment

sp	074706	EGLB_ASPNG	MKFQ	STL	-LLA	AAAG	SALA	AV				PHGS	GHKE	KRA:	SVFI	EWFGS	SNESG
sp	Q96WQ8	EGLB_ASPKA	MKFQ	STL	-LLA	AAAG	SALA	AV				PHGP	GHKE	KRA:	SVFI	EWFGS	SNESG
sp	P51529	MANA_STRLI	MR	-NAR	STLI	TTAGI	MAFA	VLGL	LFALA	AGPSA	GRAEA	AAGG	IHVS	SNGI	RVVI	EG1	IGSAF
sp	P22533	MANB_CALSA	MRLK	TKIR	KKWL	SVLC	rvve	LLNI	LFI	Al	IITVN	PKVG	AATS	SNDO	GVVE	XI	DTS
			*•	•		:.	••	:				•		• •	*.:	:	.:
sp	074706	EGLB_ASPNG	AEFG	TNIP	GVWG	TDYI	FPDI	PST	ISTLI	IGKGMI	NFFRV	/QFMM	ERLI	PD	SMTO	GSYDI	EEYLA
sp	Q96WQ8	EGLB_ASPKA	AEFG	TNIP	GVWG	TDYI	FPDI	PSA	ISTLI	DKGMI	NFFRV	/QFMM	ERLI	PD	SMTO	GSYDE	EEYLA
sp	P51529	MANA_STRLI	VMRG	VNHAY	YTW-	}	YPDF	RTGS-	IADIA	AKGAI	NTVRV	VL		{	SSG	GRWTH	KTSAS
sp	P22533	MANB_CALSA	TLIG	TNHAI	HCW-	}	YRDF	RLDTA	LRGIF	RSWGMI	NSVRV	VL		\$	SNGY	ZRWTH	KIPAS

profile HMM

represents a short multiple alignment of 5 sequences with 3 consensus colums

> UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

profile HMMs

Display Settings: Abstract	<u>Send to:</u> ⊙						
Bioinformatics. 1998;14(9):755-63.	-						
Profile hidden Markov models.	Re	el					
Eddy SR.	As	ss q					
Department of Genetics, Washington University School of Medicine, 4566 Scott Avenue, St Louis, MO 63110, USA. eddy@genetics.wustl.edu	Pr	0					
Abstract	co	n					
The recent literature on profile hidden Markov model (profile HMM) methods and software is reviewed. Profile HMMs turn sequence alignment into a position-specific scoring system suitable for searching databases for remotely homologous sequences.	a multiple Provinces. Ma	e ar					
Profile HMM analyses complement standard pairwise comparison methods for large-scale sequence analysis. Several soft	ftware R	e					
implementations and two large libraries of profile HMMs of common protein domains are available. HMM methods perform							
comparably to threading methods in the CASP2 structure prediction exercise.	R	e					
PMID: 9918945 [PubMed - indexed for MEDLINE] Free full text							

- Takes the "standard" profiles and uses HMM based "standard" mathematics to solve two problems
- Profile-HMM scores are comparable (sort of)
- Sets gap costs

How to build a profile HMMs

- 1. Collect the protein sequences from the same protein family
- 2. Generate a multiple in one of the following formats:
 - 1. Stockholm, aligned FASTA, Clustal, PSI-BLAST, SELEX and PHYLIP.
- 3. Use hmmbuild to create a profile HMM
- 4. This profile can be used to identify distant family members

Multiple Sequence Alignment Tools

https://www.ebi.ac.uk/Tools/msa/

- Clustal Omega
- T-Coffee
- Muscle

Protein Domain Summary

- Protein Domains are independent structural entities that are found with various partners.
- Protein divergence is not uniform over a protein some parts are more conserved than others
- Position specific scoring matrices can capture the specific patterns of conservation at different sites in a protein
- PSI-BLAST combines searching, multiple alignment, and PSSMs
- Statistical estimates are difficult with PSSMs, use PSI- SEARCH and PSI-PRSS
- HMMER3 creates HMM models of a protein family from a multiple sequence alignment
- Iterative PSSM/HMM searches may be contaminated by Homologous Overextension
- Single models cannot capture diverse families (PFAM Clans)
- Protein domains can be identified using RPS-BLAST or CDD searching

Workshop Time

https://bcantarel.github.io/cshl_homology_workshop2

